Rapid, Multiplexed Phosphoprotein Profiling Using Silicon Photonic Sensor Arrays

نویسندگان

  • James H. Wade
  • Aurora T. Alsop
  • Nicholas R. Vertin
  • Hongwei Yang
  • Mark D. Johnson
  • Ryan C. Bailey
چکیده

Extracellular signaling is commonly mediated through post-translational protein modifications that propagate messages from membrane-bound receptors to ultimately regulate gene expression. Signaling cascades are ubiquitously intertwined, and a full understanding of function can only be gleaned by observing dynamics across multiple key signaling nodes. Importantly, targets within signaling cascades often represent opportunities for therapeutic development or can serve as diagnostic biomarkers. Protein phosphorylation is a particularly important post-translational modification that controls many essential cellular signaling pathways. Not surprisingly, aberrant phosphorylation is found in many human diseases, including cancer, and phosphoprotein-based biomarker signatures hold unrealized promise for disease monitoring. Moreover, phosphoprotein analysis has wide-ranging applications across fundamental chemical biology, as many drug discovery efforts seek to target nodes within kinase signaling pathways. For both fundamental and translational applications, the analysis of phosphoprotein biomarker targets is limited by a reliance on labor-intensive and/or technically challenging methods, particularly when considering the simultaneous monitoring of multiplexed panels of phosphoprotein biomarkers. We have developed a technology based upon arrays of silicon photonic microring resonator sensors that fills this void, facilitating the rapid and automated analysis of multiple phosphoprotein levels from both cell lines and primary human tumor samples requiring only minimal sample preparation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays.

We experimentally demonstrate an efficient and robust method for series connection of photonic crystal microcavities that are coupled to photonic crystal waveguides in the slow light transmission regime. We demonstrate that group index taper engineering provides excellent optical impedance matching between the input and output strip waveguides and the photonic crystal waveguide, a nearly flat t...

متن کامل

Fabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching

In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE) was carried out with silver catalyst. Provided solution (or materiel) in combination with laser interference lithogr...

متن کامل

Nanophotonic assemblies Nanowires for Integrated Multicolor Nanophotonics**

Nanoscale light-emitting diodes (nanoLEDs) with colors spanning from the ultraviolet to near-infrared region of the electromagnetic spectrum were prepared using a solution-based approach in which emissive electron-doped semiconductor nanowires were assembled with nonemissive hole-doped silicon nanowires in a crossed nanowire architecture. Singleand multicolor nanoLED devices and arrays were mad...

متن کامل

Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers.

The acoustic pressure sensitivities of hollow-core photonic bandgap fibers (HC-PBFs) with different thicknesses of silica outer-cladding and polymer jacket were experimentally investigated. Experiment with a HC-PBF with 7 μm-thick silica outer cladding and 100 μm-thick Parylene C jacket demonstrated a pressure sensitivity 10 dB higher than the commercial HC-1550-02 fiber and 25 dB higher than a...

متن کامل

Generation of miniaturized planar ecombinant antibody arrays using a microcantilever-based printer.

Miniaturized (Ø 10 μm), multiplexed (>5-plex), and high-density (>100 000 spots cm(-2)) antibody arrays will play a key role in generating protein expression profiles in health and disease. However, producing such antibody arrays is challenging, and it is the type and range of available spotters which set the stage. This pilot study explored the use of a novel microspotting tool, Bioplume(TM)-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2015